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• A random variable if called continuous if there is a nonnegative 
function !! called probability density function (PDF) of " such 
that 

ℙ " ∈ % = ∫" !! ( )( for every subset % ⊂ ℝ.

• The probability that the value of " falls with in an interval is

ℙ - ≤ " ≤ / = 0
#

$
!! (())(

Probability density function (PDF)
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The CDF of a random variable " with PDF !! (or PMF 3!) is 
denoted as 4!

∀(,

4!(() = ℙ " ≤ ( =
7
%&'

3!(8) if " is discrete

0
()

'
!! A )A if " is continuous

Cumulative density function (CDF)
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Geometric and exponential CDFs
Exponential PDF

!! ( = E FG(*' if ( > 0
0 otherwise

Exponential CDF

Geometric PMF
3! 8 = 1 − 3 %(+3

Geometric CDF
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Geometric and exponential CDFs
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• A joint density function for two continuous random variables !, # is a 
function $:ℝ! → ℝ, such that
• ! is nonnegative,  !!,# ", $ ≥ 0, ∀", $ ∈ ℝ
• Total integral is 1,  ∫$%

% ∫$%
% !!,# ", $ +" +$ = 1

• The joint distribution of two continuous random variables !, # is given 
by, ∀) ≤ +, , ≤ -

ℙ ) ≤ ! ≤ +, , ≤ # ≤ - = 0
"

#
0
$

%
$&,( 1, 2 -1 -2 .

Joint distribution: Joint PDF
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• The marginal PDF !! of " is given by 

!! ' = 0
()

)
!,,. (, N )N

• Similarly

!. ' = 0
()

)
!,,. (, N )(

Joint distribution: Marginals
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• If O, P are two random variables associated with the same 
experiment, we define their joint CDF by 

4,,. (, N = ℙ(O ≤ (, P ≤ N)

• The joint PDF of two continuous random variables O, P is !,,., then

4,,. (, N = ℙ O ≤ (, P ≤ N = 0
()

'
0
()

/
!,,. (, N )( )N .

Joint distribution: Joint CDFs
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• Two random variables O, P are independent if the event - ≤
O ≤ / and R ≤ P ≤ ) are independent for all - ≤ /, R ≤ ). 
ℙ - ≤ O ≤ /, R ≤ P ≤ ) = ℙ - ≤ O ≤ / ℙ - ≤ O ≤ /

• The joint density of independent random variables O, P is the 
product of the marginal densities

!,,. (, N = !, ( !. N

Independence
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Romeo and Juliet have a date at a given time and each will arrive at the meeting place with 
a delay between 0 and 1 hour. Let 0, 1 denote the delays of R and J respectively. All pairs of 
delay (3, 4) are equally likely. The first two arrive will wait 15 min and leave if the other 
hasn’t arrived. What’s the probability that they meet. 

Example 1. 2D uniform PDF EE ie
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Example 2.
• The joint PDF of random variable X and Y is a constant c on the 

set S in figure, and 0 outside, Find the value of c and the marginal 
PDFs of X and Y
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• A continuous random variable " is normal or Gaussian if 
the PDF is in the form 

!, ( = 1
2T G

( '(6 !
7 8!

Normal random variable 
(normal distribution, Gaussian distribution)
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• A continuous random variable "~V W, X7 , -, / ≠ 0, Z =
-" + /. Then Z~V -W + /, -7X7

• Further if Z = !(6
8 , then Z~V 0,1

Normal random variable 
(normal distribution, Gaussian distribution)
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• CDF of V 0,1 standard normal is denote by Φ
Φ N = ℙ P ≤ N = ℙ P < N = 1
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• CDF for "~V W, X7 calculation 
1. standardize ! by defining a new normal r.v. " = !"#

$
2. ℙ ! ≤ (

CDF of standard normal 
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• Let O~V 0,1 , P~V 0,1 , O ⊥ P. Let -, / ∈ ℝ be constant. 
Then _ = -O + /P~V 0, -7 + /7

• A general case

Sum of i.i.d. Normal
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Let O+, O7, … , O: be a sequence of iid random variables with 
a O; = W, b-c O; = X7

_: =
d: − eW
X e = O+ + O7 +⋯+ O: − eW

X e

a _: = 0, b-c _: = eX7
X7e = 1

The CDF of _: converge to standard normal CDF

lim
:→)

ℙ _: ≤ i = Φ i , ∀i

Central Limit Theorem (CLT)

a ECE M ane

e O
Noi



Let O+, O7, … , O: be a sequence of iid random variables with 
a O; = W, b-c O; = X7. If e is large, ℙ d: ≤ R can be 
approximated by treating d: as if it were normal:

1. Calculate the mean eµ and the variance eX7 of d:
2. calculate the normalization value i = =(:6

8 : (z-score)

3. Use approximation ℙ d: ≤ R ≈ Φ(i)
where Φ * is available from standard normal CDF table.

Normal approximation based on CLT
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We want to find out the value p representing the fraction of people 
supporting candidate A in a city. 

Example 3. Polling 
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How many people we need to interview if we wish to estimate 
within accuracy of 0.01 with 95% probability. 

Example 3. Polling 
table

1 96 0.975

2 0 01 Jh 96

n 9604



• Two random variables O, Pwith join PDF !,,.. For any fixed 
N with !. / > 0 the conditional PDF of O given P = N is 
defined by 

!,|. ( N = !,,.((, N)
!. N

Conditioning



Conditioning !,|. ( N = !,,.((, N)
!. N



https://link.springer.com/content/pdf/10.1007%2F978-1-4612-4374-8_6.pdf



• When p is small, n is large, binomial is best approximated 
by poisson distribution
• When n is large, p is not very small, binomial is best 

approximated by normal distribution 

• Here is a good illustration: 
https://math.stackexchange.com/questions/3278070/app
roximation-of-binomial-distribution-poisson-vs-normal-
distribution

Approximation of binomial

https://math.stackexchange.com/questions/3278070/approximation-of-binomial-distribution-poisson-vs-normal-distribution


https://math.stackexchange.com/questions/3278070/approximation-
of-binomial-distribution-poisson-vs-normal-distribution
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