## Continuous Random Variable II

Aug 3, 2022

### Probability density function (PDF)

 A random variable if called continuous if there is a nonnegative function  $f_X$  called probability density function (PDF) of X such that

$$\mathbb{P}(X \in B) = \int_B f_X(x) dx$$
 for every subset.

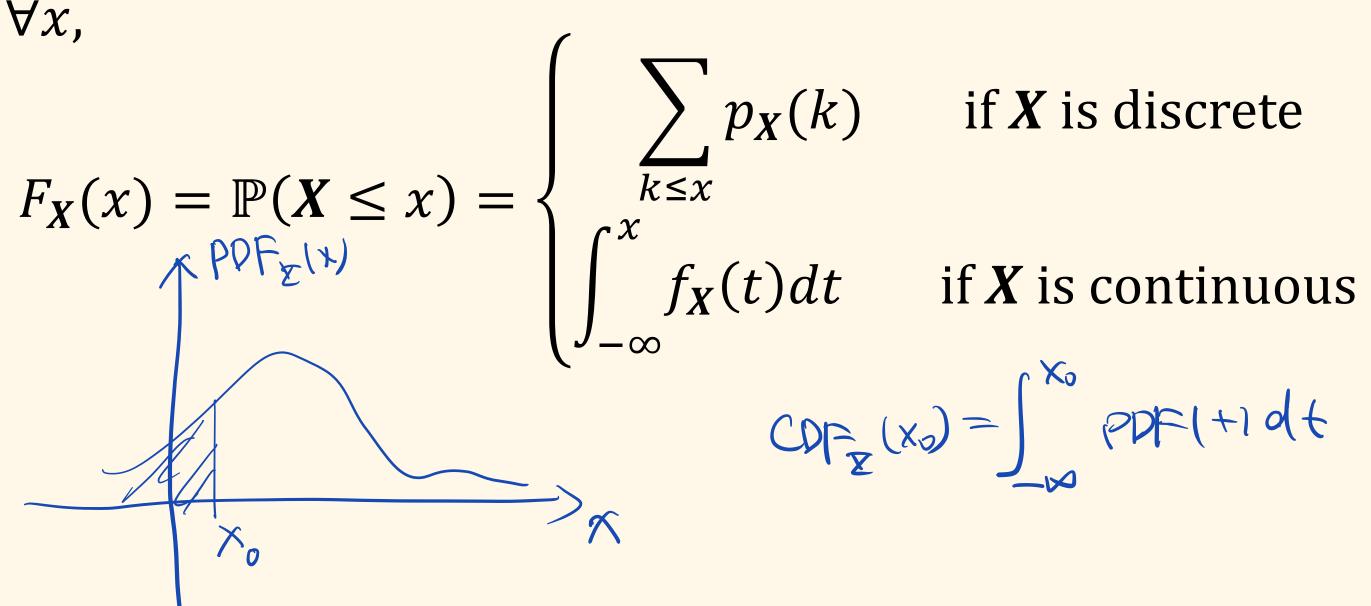
• The probability that the value of X falls with in an interval is  $\mathbb{P}(a \le \mathbf{X} \le b) = \int_{b}^{a} f_{\mathbf{X}}(x) dx$  $\mathbb{P}(\mathbf{X} \in (x, x \in S)) = \int_{x}^{x \in S} f_{\mathbf{Z}}(x) dx = f_{\mathbf{X}}(x) dx$ 

### $B \subset \mathbb{R}$ .



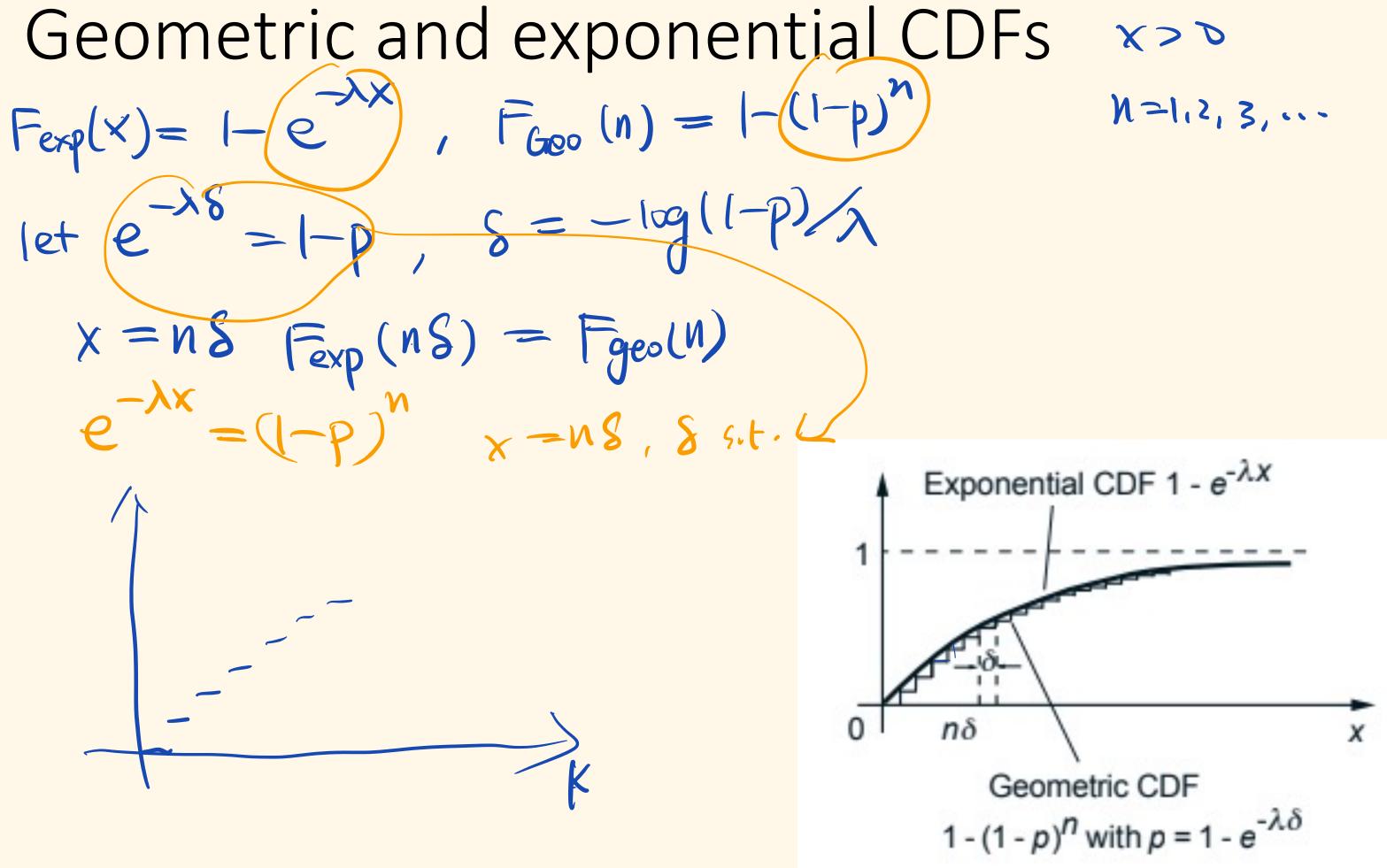
### Cumulative density function (CDF)

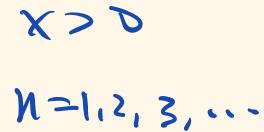
The CDF of a random variable X with PDF  $f_X$  (or PMF  $p_X$ ) is denoted as  $F_X$ 



# Geometric and exponential CDFs **Geometric PMF Exponential PDF** $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$ Geometric CDF **Exponential CDF** $F_{\Sigma}(x) = \mathbb{P}(X \leq x) = \int_{-\infty}^{x} f_{\Sigma}(t) dt$ $=\int_{0}^{x}\lambda e^{-\lambda t}dt$ $= -e^{-\lambda t} \Big|_{D}^{X} = \begin{cases} 0 & X \leq 0 \\ -\lambda x \\ 1 - e & X \end{cases}$

 $e^{-\lambda t}dt = -\frac{1}{\lambda}e^{\lambda t}$  $p_X(k) = (1-p)^{k-1}p$  $F_{x}(n) = P(x \le n) = \tilde{Z} P(1-p)^{k-1}$  $= p \frac{1 - (1 - p)^{n}}{1 - (1 - p)} = 1 - (1 - p)^{n} n = 1 - (1 - p)^{n}$ 





## Joint distribution: Joint PDF

- (x,y)• A joint density function for two continuous random variables X, Y is a function  $f(\mathbb{R}^2) \rightarrow \mathbb{R}$ , such that
  - f is nonnegative,  $f_{X,Y}(x,y) \ge 0, \forall x, y \in \mathbb{R}$
  - Total integral is 1,  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$
- The joint distribution of two continuous random variables X, Y is given by,  $\forall a \leq b, c \leq d$

$$\mathbb{P}(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x, y) dx$$

$$\mathbb{P}(a \le \widehat{x} \le b) = \int_{a}^{b} f_{X,Y}(x, y) dx$$

y)dx dy.

# Joint distribution: Marginals • The marginal PDF $f_X$ of X is given by $f_{X(x)} = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \frac{2P(X,Y=Y)}{Y}$

- Similarly

 $f_{Y(x)} = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$ 

### Joint distribution: Joint CDFs

• If X, Y are two random variables associated with the same experiment, we define their joint CDF by  $F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y)$ 

• The joint PDF of two continuous random variables X, Y is  $f_{X,Y}$ , then

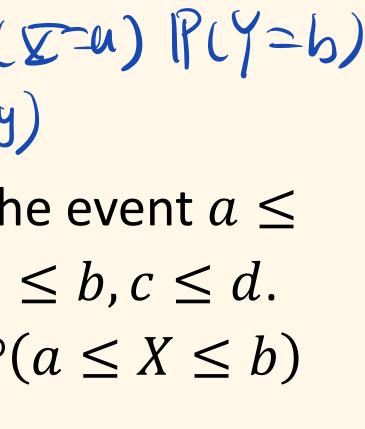
$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}$$

(x, y) dx dy.

- Independence V : a.b. P(Z = a, Y = b) = P(Z = a) P(Y = b) P(Z = a, Y = b) = P(Z = a) P(Y = b)
  - Two random variables X, Y are independent if the event  $a \leq x$  $X \leq b$  and  $c \leq Y \leq d$  are independent for all  $a \leq b, c \leq d$ .  $\mathbb{P}(a \le X \le b, c \le Y \le d) = \mathbb{P}(a \le X \le b)\mathbb{P}(a \le X \le b)$

• The joint density of independent random variables X, Y is the product of the marginal densities

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$



fxy(xiy)

# Example 1. 2D uniform PDF

Romeo and Juliet have a date at a given time and each will arrive at the meeting place with a delay between 0 and 1 hour, Let X, Y denote the delays of R and J respectively. All pairs of delay (x, y) are equally likely. The first  $x = x^2$  arrive will wait 15 min and leave if the other hasn't arrived. What's the probability that they meet.

0.5



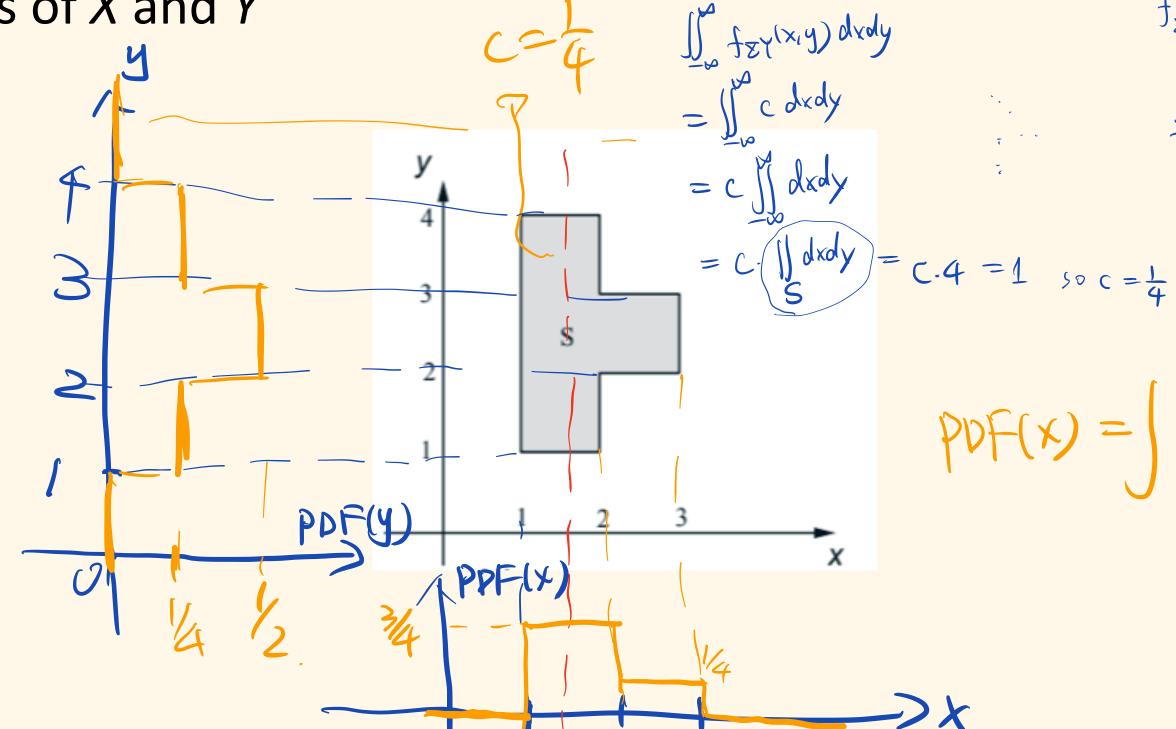


### 14×42

otherwise

# Example 2. $f_{z(x)} = \begin{cases} \frac{34}{4} & \frac{14 \times 42}{2 \times 4} \\ \frac{54}{4} & \frac{24 \times 42}{2 \times 4} \end{cases}$

• The joint PDF of random variable X and Y is a constant c on the set S in figure, and O outside, Find the value of c and the marginal PDFs of X and Y

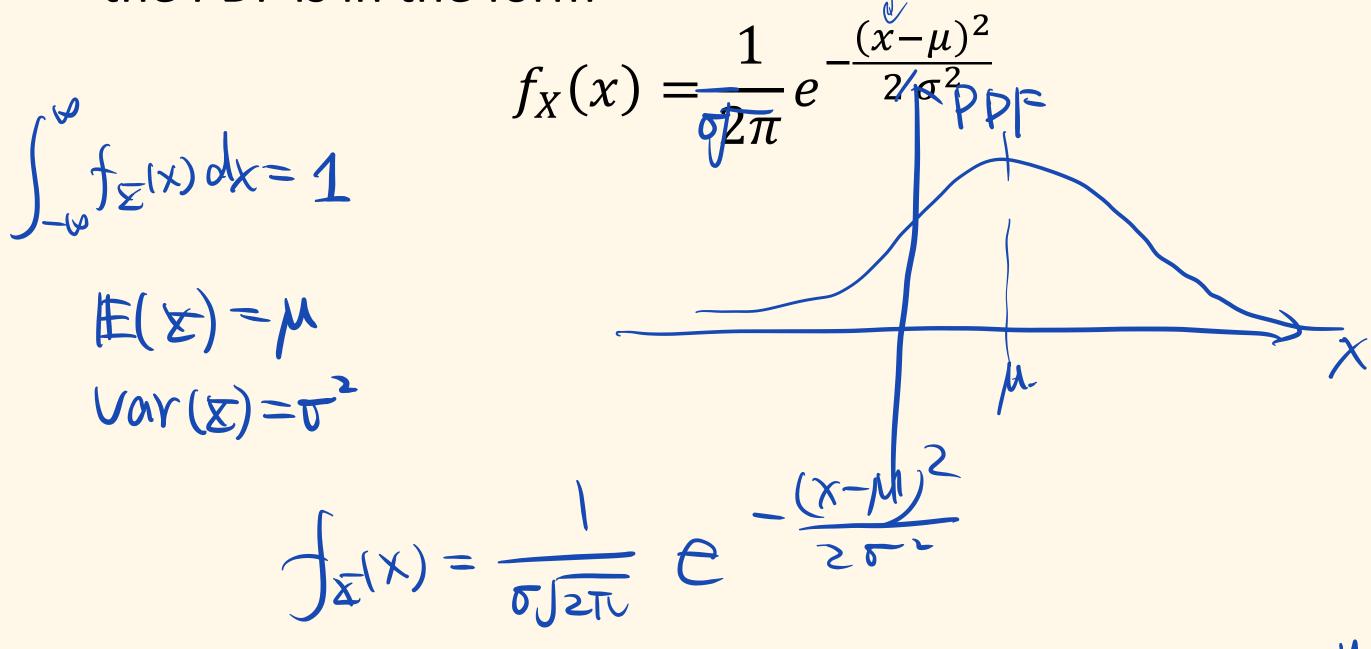


# $f_{\chi\gamma}(x,y) = c$ $\iint_{-10}^{100} = \iint_{-10}^{100} + \iint_{-100}^{100} + \iint_{-10$

PDF(x) = fgy(xy) dy

### 2 Normal random variable

 A continuous random variable X is normal or Gaussian if the PDF is in the form



### (normal distribution, Gaussian distribution)



### Normal random variable (normal distribution, Gaussian distribution) $\Sigma \sim \mathcal{N}(0,1)$

• A continuous random variable  $X \sim \mathcal{N}(\mu, \sigma^2)$ ,  $a, b \neq 0, \underline{Y} = aX + b$ . Then  $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$  $E(Y) = E(aX) + b = a E(X) + b = a\mu + b$  $var(Y) = var(aX+b) = a^2 var(X) = a^2 c^2$ • Further if  $Y = \frac{X - \mu}{\sigma}$ , then  $Y \sim \mathcal{N}(0, 1)$  $\mathcal{E} \sim (\mu, \sigma)$ N(0,1) - standard normal



### CDF of standard normal

• CDF of  $\mathcal{N}(0,1)$  standard normal is denote by  $\mathcal{O}$ 

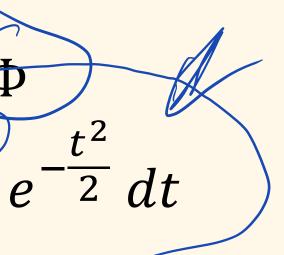
$$\Phi(\mathcal{Y}) = \mathbb{P}(Y \leq y) = \mathbb{P}(Y < y) =$$

• CDF for  $X \sim \mathcal{N}(\mu, \sigma^2)$  calculation

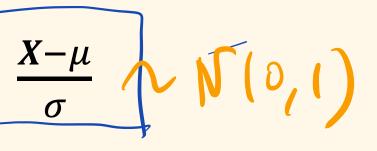
0.5-0.1

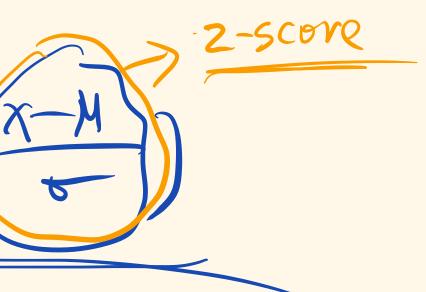
1. standardize X by defining a new normal r.v.  $Y = \frac{X-\mu}{\sigma}$ 2.  $\mathbb{P}(X \le x) = \mathbb{P}\left(\begin{array}{c} X - \mu \\ x - \mu \end{array}\right) \le \frac{X - \mu}{\sigma}$ 

 $= \mathbb{P}(Y \leq \frac{x-M}{m})$ 



 $-\infty$ 





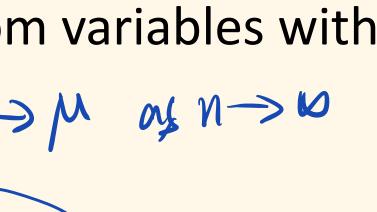
### Sum of i.i.d. Normal

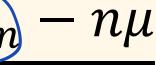
- Let  $X \sim \mathcal{N}(0,1), Y \sim \mathcal{N}(0,1), X \perp Y$ . Let  $a, b \in \mathbb{R}$  be constant. Then  $Z = aX + bY \sim \mathcal{N}(0, a^2 + b^2)$
- A general case  $\chi \sim N(\mu, \sigma)$   $\gamma \sim N(\mu_2, \sigma_2)$  $Z = \alpha Z + b \int \sim N(\mu_1 + \mu_2, \alpha^2 \sigma_1^2 + b^2 \sigma_2^2)$

### Central Limit Theorem (CLT)

Let  $X_1, X_2, \dots, X_n$  be a sequence of iid random variables with  $\mathbb{E}(X_i) = \mu, \ Var(X_i) = \sigma^2$  $\mathbb{E}(S_n)$  $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$ N(o))  $\mathbb{E}(Z_n) = 0, Var(Z_n) = \frac{n\sigma^2}{\sigma^2 n} = 1$ 

The CDF of  $Z_n$  converge to standard normal CDF  $\lim \mathbb{P}(Z_n \le z) = \Phi(z), \forall z$  $n \rightarrow \infty$ 





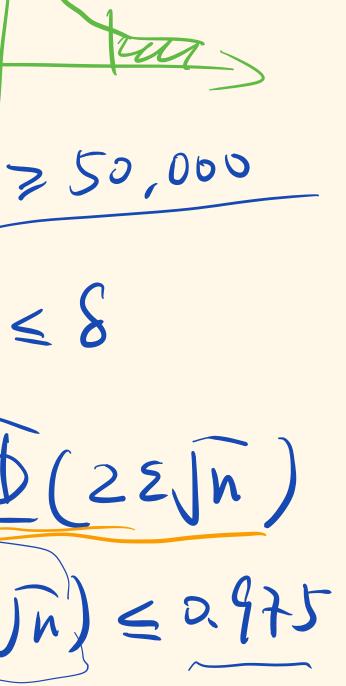
## Normal approximation based on CLT

- Let  $X_1, X_2, \dots, X_n$  be a sequence of iid random variables with  $\mathbb{E}(X_i) = \mu$ ,  $Var(X_i) = \sigma^2$ . If *n* is large  $\mathbb{P}(S_n \leq c)$  can be approximated by treating  $S_n$  as if it were normal:
- 1. Calculate the mean  $n\mu$  and the variance  $n\sigma^2$  of  $S_n$
- calculate the normalization value  $z = \frac{c n\mu}{\sigma \sqrt{n}}$  (z-score) 2.
- Use approximation  $\mathbb{P}(S_n \leq c) \approx \Phi(z)$ 3. where  $\Phi(z)$  is available from standard normal CDF table.

### Example 3. Polling

We want to find out the value p representing the fraction of people supporting candidate A in a city.

 $P(|M_n - p| \ge \varepsilon) \le \delta$ V 0.05 0,0.  $P(|M_n-p|>2) \doteq 2P(M_n-p>2) \leq 8$  $P(M_n - p \ge z) \le |-\phi(z) = |-\phi(zz)n)$  $(2 \cdot 0.01 \cdot 5n) \leq 0.05, \Phi(2.001 \cdot 5n) \leq 0.975$ 



### Example 3. Polling

How many people we need to interview if we wish to estimate within accuracy of 0.01 with 95% probability.

> $2 - 0.01 \sqrt{n} = 1.96$ => n 2 9604

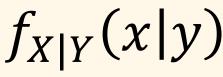
table.(1.96) = 0.975

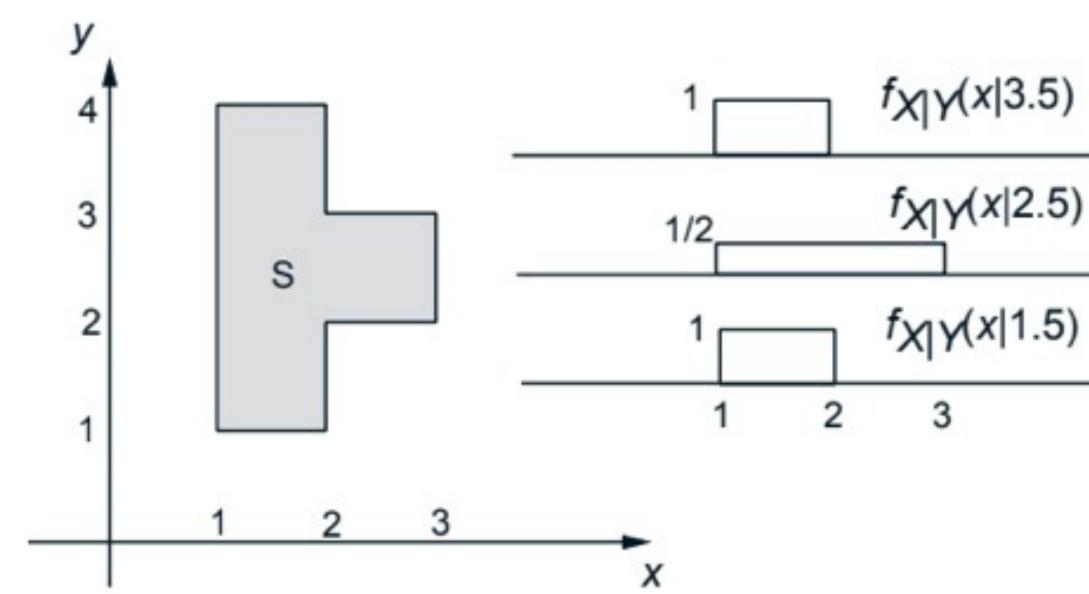
### Conditioning

• Two random variables X, Y with join PDF  $f_{X,Y}$ . For any fixed y with  $f_{Y(y)} > 0$  the conditional PDF of X given Y = y is defined by

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

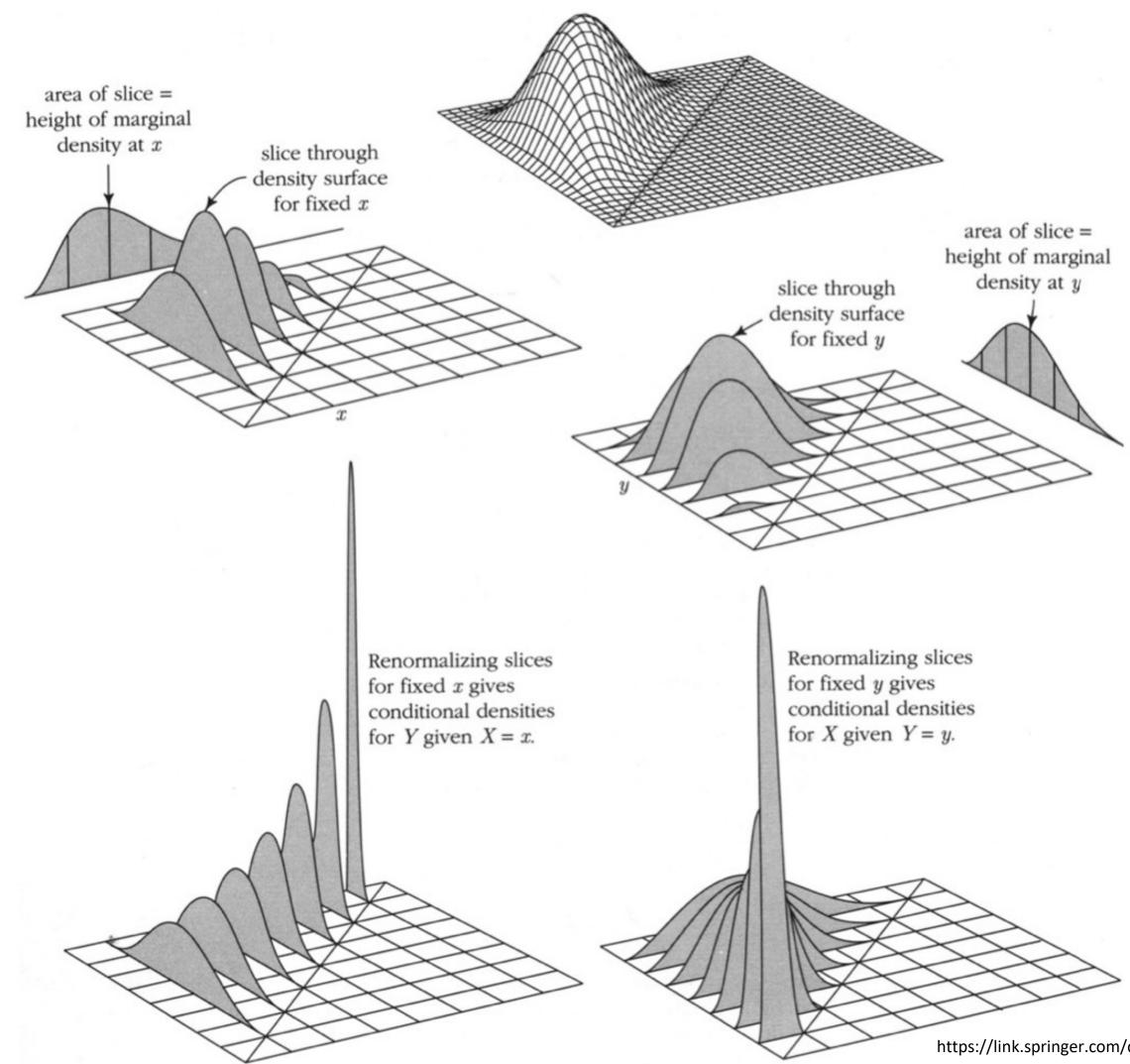
### Conditioning





 $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$ 

fx1y(x|2.5) x X х



https://link.springer.com/content/pdf/10.1007%2F978-1-4612-4374-8\_6.pdf

### Approximation of binomial

- When p is small, n is large, binomial is best approximated by poisson distribution
- When n is large, p is not very small, binomial is best approximated by normal distribution
- Here is a good illustration: https://math.stackexchange.com/questions/3278070/app roximation-of-binomial-distribution-poisson-vs-normaldistribution

